Six Reasons for a Sudden Drop in Math Grades Of Your Child

Six Reasons for a Sudden Drop in Math Grades

By James H. Choi
Source Link

“All happy families are all alike;
every unhappy family is unhappy in its own way”
–Leo Tolstoy, the first line of Anna Karenina–

“All good math students are alike;
every bad math student becomes bad in one of 6 ways.”
— James H. Choi–


When you open a newspaper, it seems there are only troubles and accidents in this world. When you listen to a math teacher, it would seem all students are falling into dangerous mathematical traps. After all, no respectable newspaper would report that “absolutely nothing happened to the vast majority of people today,” nor would a competent math teacher get a call from a stranger proclaiming, “My daughter is doing very well in math and we don’t need you!”


As a math teacher, most calls I get go this way:


“My son’s math grade is going down! Do you know why?”
“It depends.”
“Depends on what?”
“On many things.”
“Many things, you say?”
“Yes. For example, are all of his grades going down or just his math grade?”


1. Biological stage:

“Blood is thicker than water,
and hormones even thicker.”
–James H. Choi–

If all of his grades were going down, then it is probably not a math problem. The hormone factory runs in full gear at the high school age. As the students’ heights, tastes, hobbies, interests and even values go through changes, it would be strange indeed if only their interest in mathematics remained intact. The interest in mathematics may share the same fate of childhood toys and dolls.

This is a highly insecure age and, perhaps as a result, an age of revolt. They will fight to win their freedom from parents’ authority, only so that they can submit themselves to their peers’ authority. At this age, the definition of truth is “All my friends do it, too.”

I am not sure of what can be done to fight this awesome force of nature, if it has to be fought at all. Mathematical ability doesn’t seem to be very important in reaching the ultimate goal of life, which is supposed to be happiness. Besides, who you know is supposed to be more important than what you know. Perhaps socializing and befriending are indeed more important than anything else. After all, the world is full of successful and happy people who proudly claim their mathematical incompetence. The question is more philosophical than mathematical. I shall leave the solution to the philosophers and poets.


Only the math grades are going down; he is a smart student. I am not sure why he is suddenly struggling,” the mother said.
“Did he ever say that he hates the class or the teacher?” I asked.

2. Social Situation:

“Don`t let school interfere with your education.”
–Mark Twain–


Two important social factors affecting students’ math grades are their teachers and friends.

The effect of bad teachers needs no mention. It is hard enough to study with the finest teachers. Having a bad teacher makes every step an uphill battle. A transition from a good teacher to a bad one is jarring psychologically and creates a noticeable change on a report card.

Bad teachers come in three varieties: ignorant, indifferent and unlikable.

When teacher’s knowledge is substandard, then it is no surprise the students end up ignorant as well. Worse, the students reach a state of ignorance through a path of endless confusion and frustration, muddying the water, making future learning more difficult.

Other teachers know their subjects but present them in such mind-numbing manners that the lesson disengages the students. With such indifferent teachers, students are left on their own to learn the material.

A teacher’s likeability is just as important as competence or enthusiasm. Likeability is usually linked to the scholastic competence and pedagogical passion the teacher displays, but it could also be linked to some other force of nature. When a student likes his teacher, his grade generally improves. The reverse is also true. Thus, math grades might suffer from the student’s purely personal dislike for his teacher.
And, of course, there are unique teachers that embody ignorance, indifference and dislikeability all in one, making them singularly effective in lowering students’ math grades.

There is not much I can advise or suggest here because, by and large, public school teacher selection is done by that overpowering force in our life: luck. And also, if this problem could be fixed easily, the whole test-preparation and tutoring industry would never have existed in the first place. But for those who want to take action, I would like to recommend the following book: Bad Teachers by Guy Trickland for advice on how to deal with the school’s bureaucracy.

I’d also like to wish you what matters the most: good luck.


“No, he likes his math teacher,” the mother replied.
“What is he learning in math now?” I asked.
“I am not sure, I would have to ask.”
“Did he just start geometry?”

3. Content Change:

“Change alone is unchanging.”
–Heraclitus(c.540-c.475 BC) Greek philosopher–


Mathematics is a collection of many different disciplines. Although they all use logical reasoning and build upon one another, some use abstract, spatial, or arithmetic skills. Throughout high school, students go through several transitions within math that can be jarringly disruptive.

The transition into geometry is particularly difficult for some. In the United States, the typical high school curriculum suspends algebra after one year to teach geometry, then resume algebra again, calling it algebra 2. Thus geometry starts and ends abruptly. In my opinion, this is not the best arrangement, but that’s what the higher educational power of the United States decided, and I only work here.

One might think that geometry should run in our blood by now because it didn’t change much for 2,400 years. Traveling back in time for 2,400 years, one would pass Jesus’ time and reach all the way into Buddha’s time. That’s how ancient of an art geometry is. The usual complaint (“The world is changing so quickly, I cannot keep up!”) does not apply to geometry at all.

Even so, many students find it difficult to deal with spatial relationship and the rigor of logical proof. What is frustrating is that some understand it without any difficulty. Geometry is also very difficult to teach in a classroom setting because of the natural divergence of student levels. I will write about geometry — how to prepare for it and how to study for it — in another section.

Another notable disruptive transition occurs while beginning to study probability. In the discipline of probability, you cannot test your answer by plugging it in. In fact, you cannot test the answer even if you possess all the time in the world. Probability is constructed by pure logic and can be validated or disproved only by superior logic — not by an experiment or demonstration.

If the grade drop happened during these subject transitions, then the drop is not likely to be a reflection of a student’s change, but rather of the change in use of their brain’s area. In other words, the student didn’t change, but the math world changed on him even though it is still called “mathematics.” The good news is that the student’s performance will go back to normal once he has finished these new topics. The bad news is that some subject last for a year, and others never end.

The only right answer is to admit that some topics are more difficult for some people, and after admitting this, compensate for one’s uneven gift with more effort — however unfair the concept of more effort might seem. It is worth remembering that in the end, only results matter. The effort you had to put into the subject, however inordinate, won’t dilute your achievement.


“I don’t think so,” she said. “He learned geometry already.”
“I see,” I said. “How good is he with mental calculation? Does he depend on the calculator for everything?”

4. Arithmetic Weakness:

“I cannot even balance my own checkbook! Haha!”

Arithmetic and mathematics are used interchangeably in everyday language, but they are different. Arithmetic is about addition, subtraction, multiplication and division. Mathematics is about logic and solving problems. The timeless rhetoric about the inability to balance the checkbook is not about mathematics at all; it is about arithmetic. The current high school generation was raised with calculators. Perhaps as a result, their arithmetic incompetence is staggering.

Although mathematics is more than just arithmetic, arithmetic is absolutely necessary for understandingmathematics.

The current generation of high school students grew up in a world flooded with calculators, and as a result they are showing an alarmingly low level of competence with arithmetic.

Calculators by themselves are not the culprit. If one searches for studies on the use of calculators in math education, one can find many arguments in favor of the device. Indeed, calculators can be used to enhance learning. I myself use the most powerful calculator in the world in my own classes: Wolfram Research’s Mathematica software. We cannot live without calculators.

The problem is the way the calculators are used. The calculator usage habits of high school students are shocking. Many reach out for the calculator when they are faced with “12 x 2.” They do not know if 0.2 x 0.2 would be 0.4 or 0.04 without working it out, and they have difficulty telling if a division by ½ would increase or decrease the number.

The inability to perform arithmetic is a crippling deficiency, but the even bigger problem is the loss of the notion of numbers themselves. These calculator-dependent students grow so numb toward numbers they can no longer compare the relative sizes of complex numbers. This weakness will eventually bring down the student’s math grade, typically sometime between algebra 1 and algebra 2.

What is really surprising about this weak arithmetic skill is the current collective neglect in fixing it. From the teacher’s side, nothing is done to address this problem. There is no high school course on “How to compute quickly with accuracy.” In fact, arithmetic incompetence is not even recognized as a problem because students can “just use calculators.” From the students’ side, they all wish the problem away by saying, “Oh, that was just a stupid mistake.” Meanwhile, mathematics seems to get harder and harder for them, as those “stupid mistakes” become more frequent.

Arithmetic weakness is a very difficult problem to solve. It takes time, patience and determination to overcome. Yet without addressing this problem first, learning higher math would be like pouring water into a leaky jar.

I would like to be more optimistic, but typically this problem doesn’t go away without professional help. It will continue to limit the student’s mathematical performance until his last math class.


“No, he did Kumon when he was young,” the mother said. “He handles numbers easily.”
“You said his math grade is falling now,” I said. “How well did he do in previous years? Did he get perfect scores? Did he sometimes get a B?”

5. Mathematics Foundation:

“Success depends upon previous preparation,
and without such preparation there is sure to be failure.”

More than any other discipline, mathematics is built upon a clear sequence, with well established dependencies among its concepts. For example, solving second-degree equations is impossible without first understanding first-degree equations. Solving a probability problem is impossible without first knowing how permutations work. There are some quasi-independent branches like geometry, but for the most part, even when a new topic deals with a radically new concept, it still utilizes many of the previous concepts and builds upon them.

This is why it is common to see students getting worse grades in mathematics, yet it is rare to see a student getting better. Once the math foundation is weak, anything built upon it is shaky. When a tough test like the SAT hits, delicate houses of cards will collapse.

Although a “B” is supposed to be “Good,” these days a “B” stands for “Bad.” School grades are so inflated that I find many holes in the understandings of even “A” students. Getting an “A” is no longer a sign of competence, whereas getting a “B” is a sure alarm that the student is losing grip.

Thus, getting a grade of “B” or worse in math could indicate difficult times as little as a year later. Sooner or later, something else will be built upon the concept a student is currently getting a “B” in, and the student’s understanding is likely to collapse due to the foundation’s weakness. Typically, a student tries to overcome a problem with current math curriculum by studying only the new material, but the real problem lies in what this student learned a year ago. It takes a professional math teacher to analyze a problem of this nature and direct the student to the right material to review. Without this teacher’s guidance, the student is likely to repeatedly crash into that brick wall and lose both confidence and interest after putting in so much time, which proved to be only misguided effort.


“He never got a B in math before,” the mother said. “He was not the top, but he didn’t have difficulty with math before.”
“I see. Do you know if he started precalculus or calculus?” I asked.

6. Abstraction Faculty:

“Imagination is more important than knowledge.”
–Albert Einstein–

By definition, infinity cannot be grasped, and adding an infinitely many numbers cannot be performed even by the most advanced computers in the world. Yet students are asked to do in five minutes what super computers cannot do in 1,000 years. For example, what would be the answer to the following infinite addition that will go on until the end of the world?

or how about this one that will also keep adding until the end of the universe?

The first sum adds up to 1 only if you add until the end of the universe. If you stop in the middle, the sum will be less than 1. The second one’s answer is infinity, but only if you add all the numbers. If you stop anywhere, the answer will be very big but not infinity.

How do we know this? Did anyone actually do it once to find out? These are addition problems, but adding will never lead to the answer because you cannot finish the addition in this universe’s lifetime even on a supercomputer. Only software like Mathematica can solve it, but Mathematica doesn’t find the answer by adding: It solves the problem by applying abstraction.

So how can the tender brains of high school students be expected to perform this level of computation?

Abstraction is the answer: The brain can imagine infinity and beyond and solve this kind of problem through abstraction, or by “thinking.” However, the brain used in this type of “thinking” is very different from the one used to add numbers. Mathematics is a discipline of abstraction, not of computation. The more advanced mathematics becomes, the fewer numbers it uses. Indeed, balancing a checkbook is only arithmetic; it has nothing to do with mathematics of abstraction.

Precalculus and calculus are concepts based on abstraction. Calculators become useless at this stage. The only way to master these topics is by “getting it.”

This is the point at which studying by memorization fails. Those who used to get an “A” by memorizing formulae will begin to fail at this point. By now, there are too many formulae and concepts to be juggled. Without a coherent unifying abstraction, all these formulae, theorems, equations and topics seem to fight with each other, causing conflict and confusion. Only by mastering the abstraction can a student fit all of them will into one coherent picture, in which one concept complements another. Without reaching this enlightened state, students will continue to view mathematics as a walk in the dark.


“He didn’t start calculus yet. He said he would learn it next year,” she said.
“Then it must be precalculus,” I said.
“Do you know why his math grade is falling?”
“I think so, but I would have to talk to him to know for sure.”
“What is the problem?” she asked.
“I think it is his transition into abstraction. That could be difficult for some.” I said.
“Can he overcome it?”
“Any high school math can be taught to any motivated student.”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s